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Abstract. The evolution of the Schrödinger-cat states in a dissipative parametric amplifier is examined.
The main tool in the analysis is the normally ordered characteristic function. Squeezing, photon-number
distribution and reduced factorial moments are discussed for the single- and compound-mode cases. Also the
single-mode Wigner function is demonstrated. In addition to the decoherence resulting from the interaction
with the environment (damped case) there are two sources which can cause such decoherence in the system
even if it is completely isolated: these are the decay of the pump and the relative phases of the initial cat
states. Furthermore, for the damped case there are two regimes, which are underdamped and overdamped.
In the first (second) regime the signal mode or the idler mode “collapses” to a statistical mixture (thermal
field).

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.60.Gd Q-switching

1 Introduction

The linear superposition principle is at the heart of quan-
tum mechanics since, using it, one can control the prop-
erties of the single states making them more or less
pronounced. The most significant example reflecting the
power of such a principle are the Schrödinger-cat states [1],
which exhibit various nonclassical effects such as squeez-
ing, sub-Poissonian statistics and oscillations in photon-
number distribution [2–4], even if the original states are
close to the classical ones [5]. Such type of states (of a jth
mode for convenience) can be represented as

|α〉φj = Nj[|αj〉 + exp(iφj)| − αj〉], (1)

where |αj〉 is a coherent state of the jth mode with com-
plex amplitudes αj , φj is a relative phase and Nj is the
normalization constant having the form

N2
j =

1
2[1 + exp(−2|αj|2) cosφj ]

· (2)

Specifically there are three values of φj , namely, 0, π
and π/2, for which (1) reduces to even coherent (ECS),
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odd coherent (OCS) and Yurke-Stoler (YSS) states, re-
spectively. These three states will be frequently used in
this paper.

There are several proposals for generating states (1) in
various nonlinear processes, e.g. see [4,6–10]. Further, the
evolution of cat states in several quantum systems has
been intensively studied [11–18]. For convenience of the
present work we refer to the interaction of these states
with environment [11–14,18], where the common goal of
such studies is the comprehension and description of the
decoherence processes (decoherence is the rapid trans-
formation of a pure linear superposition state into the
corresponding statistical mixture state) in the system
under observation, and the energy loss due to the in-
teraction with the reservoir. Most of these papers adopt
the Heisenberg–Langevin approach or the Markov master
equation approach. Although the non-Markovian dynam-
ics is important in quantum physics (theory), a unified
and compact treatment of the non-Markovian reservoirs
dates as late from [19], where also the decay and revival
of the Schrödinger-cat states are characterized.

On the other hand, parametric amplifier (nondegener-
ate) takes a considerable interest in quantum optics since
it can perfectly generate two-mode squeezing. Recently,
this device has been supported with the fast progress of
new nonlinear crystals and improved laser sources, espe-
cially femtosecond lasers [20] and it has been employed in
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experiments, e.g. in the interference experiments [21,22].
An investigation of the statistical properties of the para-
metric amplifier with losses [23] and without losses [24–26]
for compound-mode case have been performed using dif-
ferent techniques when the modes are initially prepared
in the coherent states. The anticorrelation in this model
is an interesting effect [26], where also under certain con-
ditions the variance of the photon number is less than
the average photon number and the photocounting distri-
bution becomes narrower than the corresponding Poisson
distribution for a coherent state with the same mean pho-
ton number. Moreover, the sum photon-number distribu-
tion can exhibit collapses and revivals [27] (and references
therein) similar to those typical in the Jaynes-Cummings
model (JCM) [28]; the former is in the photon number
domain rather than the time domain. So the question we
would like to address in this paper is the following: what
would be the influence of the interference in phase space
on these phenomena? In other words, we study the evo-
lution of the cat states (1) through the parametric am-
plifier and take into account the interaction with environ-
ment. The system alone may be described by tracing a
more complete description over the environment. Actu-
ally, the interaction considered here is quite different from
that considered in [11–17] because there are two opera-
tions controlling its behaviour, which are the interference
in phase space and the entanglement (correlation) between
the signal and idler modes as well as between the signal-
idler system and the environmental oscillators (reservoirs)
to which the system may be connected. Such entangle-
ments lead to the increase of the marginal entropies of
the subsystems (as is known, if the density operator de-
scribes pure states, then the entropy (S) is zero, otherwise
S �= 0) [29]). For the present system we treat the single-
and compound-mode cases. The main tools in our treat-
ment are the normally ordered characteristic functions.
The Hamiltonian which governs the interaction is [30,31]

Ĥ = �

2∑
j=1

ωj â
†
jâj − �g[â1â2 exp(iωt− iφ) + h.c.]

+ �

2∑
j=1

∞∑
l=1

[
ϕjlb̂

†
jlb̂jl + kjlb̂jlâ

†
j + k∗jl b̂

†
jlâj

]
, (3)

where âj , (â†j), j = 1, 2, are the annihilation (creation)
operators assigned to the signal and idler modes, respec-
tively; ωj are the natural frequencies of oscillations of the
uncoupled modes with ω = ω1 + ω2, ω being a pump fre-
quency (under the assumption of resonance frequency);
φ is the initial phase of the pump and h.c. means the
Hermitian conjugate term to the previous one; g is
the real coupling constant including the amplitude of
the pump (gain coefficient); b̂jl and b̂†jl are the boson an-
nihilation and creation operators of the reservoir oscilla-
tors, respectively, with the frequencies ϕjl, and kjl are
the coupling constants of the system-reservoirs interac-
tion. Hamiltonian (3) represents three wave mixing in a
nonlinear crystal described by the second-order suscepti-
bility χ(2). Specifically, a pump beam with frequency ω

travelling through the crystal creates photons of the sig-
nal and idler modes with different frequencies ωj, j = 1, 2,
such that ω = ω1 + ω2. The whole system is considered
to be interacting with its surroundings (e.g., via imperfect
cavity mirrors), which are modelled as reservoirs.

For completeness, the well-known solution of the
Heisenberg–Langevin equations for the Hamiltonian (3)
is [30,31]

Â1(t) = f1(t)â1(0) + f2(t)â
†
2(0)

+
∞∑
l

[
b̂1l(0)Γ1l(t) + b̂†2l(0)Γ ′

1l(t)
]
,

Â2(t) = f3(t)â2(0) + f2(t)â
†
1(0)

+
∞∑
l

[
b̂†1l(0)Γ2l(t) + b̂2l(0)Γ ′

2l(t)
]
, (4)

where Âj(t) = âj(t) exp(iωjt); âj(0) and b̂jl(0), j = 1, 2,
are the initial operators of the modes and reservoirs, re-
spectively. The explicit forms for the dynamical coeffi-
cients fj(t), Γjl(t) and Γ ′

jl(t) are given in Appendix A.
Further, it is worth mentioning that the Langevin forces
have the forms

L̂j(t) = −i
∑

l

kjlb̂jl(0) exp(−iϕjlt), j = 1, 2. (5)

These forces satisfy the following commutation rule

[L̂j(t), L̂
†
j′(t

′)] = γjδjj′δ(t− t′)1̂, (6)

where γj is the cavity decay rate of the jth mode (for more
details about the properties of the reservoir oscillators,
see [25,32]). Finally it is worth mentioning that including
lossy mechanism, the difference mean-photon number be-
tween the signal and idler modes in the system becomes
nonconservative.

This paper is organized as follows: in Section 2 the
basic equations and relations, such as two-mode nor-
mally ordered characteristic function, quadrature squeez-
ing, Wigner function, reduced factorial moments and
photon-number distribution are given when the modes are
initially prepared in the cat states (1). In Sections 3 and 4
discussion of the results of the single-mode and compound-
mode cases are performed, respectively, and the conclu-
sions are summarized in Section 5.

2 Basic relations and equations

In this section we give the main relations which will be
used to investigate the properties of the system under
consideration. Actually, the calculations are lengthy, but
straightforward, and for this reason, we give briefly gen-
eral calculations in such a way that particular results can
be obtained using suitable choice of parameters. We start
by discussing the initial density matrix of the system. We
assume that the system and reservoirs are initially inde-
pendent and noninteracting before switching on the inter-
action, and the interaction between them starts at t = 0.
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This means that the density operator could be written
initially as a direct product [33]:

ρ̂(0) = ρ̂f(0) ⊗ ρ̂r(0), (7)

where ρ̂r(0) is the density matrix of the system of damp-
ing oscillators, which we assume to have flat (i.e. constant
function of frequency) and broad-band reservoir spectra,
so that the mean number of reservoir quanta (phonons)
in the mode l is 〈b̂†jl(0)b̂jl(0)〉 = 〈n̂jd〉 independently of l,
where the subscript d denotes broad-band reservoir. Also
we assume that the reservoirs form chaotic systems with
mean photon numbers 〈n̂jd〉 = [exp(�ϕj/TKB) − 1]−1,
where the reservoirs-oscillators are at the temperature T ,
with the frequency ϕj , KB is Boltzmann’s constant and �

Planck’s constant divided by 2π. We proceed assuming
that ρ̂f(0) is the field density operator, which in our case,
where the modes are assumed to be initially in superposi-
tion states (1), has the form

ρ̂f(0) = |α〉φ1 |α〉φ2φ2〈α|φ1〈α|

= N2
1N

2
2

4∑
j′,j=1

exp(iφj′ + iφ′j)|αj′ 〉|αj〉〈α′
j |〈α′

j′ |

= N2
1N

2
2 [ρ̂M(0) + ρ̂SI(0) + ρ̂AI(0)]. (8)

The concise form in the second line of (8) means that the
values of αj , φj , α

′
j and φ′j should be specified to obtain the

exact form of the density operator in the first line. Here
ρ̂M(0) denotes the statistical mixture part of the density
operator as

ρ̂M(0) = |α1〉|α2〉〈α2|〈α1| + |α1〉| − α2〉〈−α2|〈α1|
+ | − α1〉|α2〉〈α2|〈−α1| + | − α1〉| − α2〉〈−α2|〈−α1|;

(9)

ρ̂SI(0) denotes symmetric interference part of the density
operator in which the two modes are in off-diagonal basis
of coherent states and can be written as

ρ̂SI(0) =
{

exp[i(φ1 + φ2)]| − α1〉| − α2〉〈α2|〈α1|

+ exp[−i(φ1 + φ2)]|α1〉|α2〉〈−α2|〈−α1|
}

+ h.c. (10)

and ρ̂AI(0) denotes asymmetric interference part of the
density operator in which one of the modes is in a diagonal
coherent states basis while the other is in off-diagonal basis
or vice versa and reads:

ρ̂AI(0) =
{

exp(−iφ1)
[
|α1〉|α2〉〈α2|〈−α1|

+ |α1〉| − α2〉〈−α2|〈−α1|
]

+ exp(−iφ2)
[
|α1〉|α2〉〈−α2|〈α1|

+ | − α1〉|α2〉〈−α2|〈−α1|
]}

+ h.c. (11)

The quantum properties of the system can be traced via
the evolution of the normally ordered characteristic func-
tion, which for the two-mode case has the form

CN (ζ1, ζ2, t) =

Tr


ρ̂(0)

2∏
j=1

exp[ζjÂ
†
j(t)] exp[−ζ∗j Âj(t)]


 , (12)

where, for the system under consideration, Âj(t) are given
in (4) and ρ̂(0) is the initial density operator of the sys-
tem (7). It is obvious that the characteristic function here
includes 16 elements [34]. We give only the calculations
related to the element exp(iφ1 + iφ′2)|α1〉|α2〉〈α′

2|〈α′
1| of

the density matrix. On substituting this element together
with (4) into (12) and calculating the expectation values,
we arrive at

I(ζ1, ζ2, t) =

exp


iφ1 + iφ′2 −

1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)




× exp

{
ζ1ζ2D(t) + ζ∗1 ζ

∗
2D

∗(t)

−

 2∑

j=1

|ζj |2BjN (t)


 +

2∑
j=1

[ζj ᾱj(t) − ζ∗j ᾱ
′
j(t)]

}
, (13)

the explicit forms of the quantities BjN (t), D(t), D∗(t)
and ᾱj(t) are given in Appendix B. It is worth mentioning
that throughout the calculation of (13), the standard com-
mutator of the Langevin forces (6) and the usual Wigner-
Weisskopf approximation have been used, which leads to a
replacement of the coupling constants by the cavity decay
rates γj ≥ 0. More details about the calculation of (13)
can be found in [30,31]. On the other hand, the charac-
teristic function of the single-mode case can be obtained
from that of the two-mode case by simply setting the pa-
rameter related to the absent mode equal to zero, e.g. the
characteristic function of the signal mode (first-mode) can
be obtained by setting ζ2 = 0 in (12) and (13).

The different moments of the bosonic operator system
can be determined by differentiation of the normally or-
dered characteristic function through the relation

〈
2∏

j=1

Â
†mj

j (t)Ânj

j (t)

〉
=

2∏
j=1

∂mj+nj

∂ζ
mj

j ∂(−ζ∗j )nj
CN (ζ1, ζ2, t)|ζ1=ζ2=0. (14)

In order to investigate squeezing property for
the compound-mode case we can define the two
quadrature operators X̂(t) = (1/2)

∑2
j=1[Âj(t) +

Â†
j(t)], Ŷ (t) = (1/2i)

∑2
j=1[Âj(t) − Â†

j(t)], where



144 The European Physical Journal D

[X̂(t), Ŷ (t)] = i1̂ and then the uncertainty rela-
tion reads 〈(∆X̂(t))2〉〈(∆Ŷ (t))2〉 ≥ 1/4, where, e.g.
〈(∆X̂(t))2〉 = 〈(X̂(t))2〉 − 〈X̂(t)〉2. Therefore, we can
say that the system is able to yield two-mode squeezing
if the squeezing factor S(t) = 2〈(∆X̂(t))2〉 − 1 < 0 or
Q(t) = 2〈(∆Ŷ (t))2〉 − 1 < 0. Similar quantities can be
defined for the single-mode case.

We proceed to the two-mode normal generating func-
tion which is defined as

C
(W )
N (λ, t) =

1
(πλ)2

∫∫
exp


− 1

λ

2∑
j=1

|ζj |2



× CN (ζ1, ζ2, t)d2ζ1d2ζ2. (15)

This function may be used in studying the sum photon-
number distribution and the reduced factorial moments
for compound modes. For the general term (13), rela-
tion (15) can be calculated to obtain

I
(W )
N (λ, t) =

1
(1 + λλ+)(1 + λλ−)

exp
[

A+λ

1 + λλ+
+

A−λ
1 + λλ−

]

× exp


iφ1 + iφ′2 −

1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)


 ,

(16)

where

λ± =
1
2
[B1N (t) +B2N (t)]

± 1
2

√
[B1N (t) −B2N (t)]2 + 4|D(t)|2,

A± =
±1

λ− − λ+

{
ᾱ′

1(t)ᾱ
′
2(t)D(t) + ᾱ1(t)ᾱ2(t)D∗(t)

− ᾱ1(t)ᾱ′
1(t)[B2N (t) − λ±]

− ᾱ2(t)ᾱ′
2(t)[B1N (t) − λ±]

}
· (17)

Expression (16) shows that each term of the generating
function of the system is the two-fold generating func-
tion for Laguerre polynomials. Further, in each term the
quantities A± and λ± play the role of the mean num-
bers of coherent photons and mean numbers of chaotic
photons, respectively. The sum photon-number distribu-
tion P (n, t) and the reduced factorial moments 〈W k(t)〉
for the compound-mode case can be defined by means of
the derivative of C(W )

N (λ, t) via the relations

P (n, t) =
(−1)n

n!
dn

dλn
C

(W )
N (λ, t)

∣∣∣
λ=1

,

〈W k(t)〉 = (−1)k dk

dλk
C

(W )
N (λ, t)

∣∣∣
λ=0

. (18)

On using (16), these quantities can be deduced to become

PI (n, t) =
1

(1 + λ−)(1 + λ+)
exp

[
A−

1 + λ−
+

A+

1 + λ+

]

× exp


iφ1 + iφ′2 −

1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)




×
n∑

l=0

1
(n− l)!l!

(
λ−

1 + λ−

)n−l(
λ+

1 + λ+

)l

× Ln−l[
A−

λ−(1 + λ−)
]Ll

[
A+

λ+(1 + λ+)

]
, (19)

〈W k
I (t)〉 = exp


iφ1 + iφ′2 −

1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)




×
k∑

l=0

(
k

l

)
λk−l
− λl

+Lk−l

(
A−
λ−

)
Ll

(
A+

λ+

)
,

(20)

where the subscript I in (19) and (20) means that these
quantities have been calculated for the general term (13).
Also in (19) and (20) Ln(.) are the Laguerre polynomials
of order n having the form

Ln(x) =
n∑

m=0

(n!)2(−x)m

(n−m)!(m!)2
· (21)

We should mention that the phase terms, e.g. the term in
the second line of (19), exist only in the off-diagonal ele-
ments indicating that these elements are suppressed faster
than the diagonal elements. In other words, the greater the
“distance” between the components of the cat states, the
more rapidly the off-diagonal elements are damped.

On the other hand, the corresponding quantities for
the single-mode case can be obtained with the help of the
single-mode normally ordered characteristic function and
applying the same procedures as before. To be more spe-
cific, a general term I ′(ζ1, t) of the first-mode case can
be obtained from (13) by setting ζ2 = 0 and consequently
the corresponding photon-number distribution and the re-
duced factorial moments are

PI ′(n1, t) = exp
[
iφ1 + iφ′2 −

ᾱ1(t)ᾱ′
1(t)

1 +B1N (t)

−1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)




×
[

B1N (t)
1 +B1N (t)

]n1 1
1 +B1N (t)

× Ln1

[ −ᾱ1(t)ᾱ′
1(t)

B1N (t)(1 +B1N (t))

]
, (22)
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〈W k
I ′ (t)〉 = exp


iφ1 + iφ′2 −

1
2

2∑
j=1

(|αj |2 + |α′
j |2 − 2α∗

jα
′
j)




×Bk
1N (t)Lk

[−ᾱ1(t)ᾱ′
1(t)

B1N (t)

]
. (23)

Finally, the quantum properties of the system can be vi-
sualized well by analyzing its Wigner function (W ). Actu-
ally, this function is sensitive to the interference in phase
space and therefore it is helpful to be examined. The
single-mode Wigner function is defined as

W (z, t) = π−2

∫
d2ζ1 exp

(
−1

2
|ζ1|2

)
× CN (ζ1, t) exp(zζ∗1 − ζ1z

∗), (24)

where CN (ζ1, t) is the single-mode normally ordered char-
acteristic function. The Wigner function for the single-
mode general term is

WI ′ (z, t) =
2

π[1 + 2B1N (t)]
exp

[
iφ1 + iφ′2

− 1
2

2∑
j=1

(
∣∣αj |2 + |α′

j |2 − 2α∗
jα

′
j

)]

× exp
{
−2

[ᾱ∗
1(t) − z∗][ᾱ′

1(t) − z]
1 + 2B1N (t)

}
· (25)

In this expressionB1N (t) is always positive and represents
the sum of quantum noises in the field, related to quan-
tum fluctuations in the interaction and the mean value of
reservoirs oscillators (the number of photons or phonons
transferred from the reservoirs to the quantum system).
This shows that the width of this part of W function be-
comes broader when the coupling with environment is con-
sidered.

In the following sections we analyze the behaviour of
the system under discussion on the basis of the results of
the present section. We investigate the properties of both
the single-mode and compound-mode cases.

3 Results for the single-mode case

In our analysis for the dissipative case we consider sym-
metrical losses that is γj = γ and 〈n̂jd〉 = n̄ for j = 1, 2.
We analyze two cases: underdamped case when 2g > γ
and overdamped case when 2g < γ. The origin of these
conditions can easily be recognized by careful examina-
tion of the time dependent coefficients in Appendix A.
For example, it holds that

f1(t) =
1
2

{
exp

[(
g − γ

2

)
t
]

+ exp[−(g +
γ

2
)t]
}
· (26)

In the following we discuss the behaviour of W function,
photon-number distribution, squeezing and reduced facto-
rial moments for the single-mode case.

3.1 Wigner function

Investigation of the single-mode W function is important
since it is informative and sensitive to the interference in
phase space, and also it gives a prediction to the possible
occurrence of the nonclassical effects in the system. Fur-
thermore, this function can be obtained experimentally
using the optical homodyne tomography [35].

In general, the W functions of ECS, OCS and YSS
(at t = 0) are consisting of two Gaussian bells, resulting
from statistical mixture of individual composite states and
interference fringes in between (signature of the nonclas-
sical effects) originating from the superposition between
different components of the states. Nevertheless, the lo-
cations of the extreme values of the interference fringes
of ECS, OCS and YCS are quite different. There are sev-
eral papers, e.g., [11,12,18,36] that have been devoted to
these fringes making them less or more pronounced by al-
lowing the cat states to evolve in different quantum optical
systems. For example, the decay rate of the interference
fringes of the W function of cat states of a mode which
is coupled to a phase-sensitive reservoir (squeezed reser-
voirs) [12], (also [34] p. 114), can be smaller or larger than
that for ordinary thermal heat bath reservoir [11]. Fur-
thermore, in these systems the fringes can be washed out
completely for a specific choice of the interaction param-
eters. In the language of the density matrix this means
that the contribution of the off-diagonal elements is small
compared with the contribution of the diagonal elements
but it is not necessarily zero. Of course, such diagonal-
ization produces a statistical mixture of coherent states,
which are close to classical wavepackets. Now if we con-
sider the W function of the signal mode for the system
under discussion, the situation becomes more complicated
than before [11,12,18] owing to the entanglement between
the signal and idler modes. The structure of the density
matrix (8) carries more information, e.g., when the signal
and idler modes are initially prepared in a distinguishable
macroscopic cat state and after switching on the interac-
tion, the initial two Gaussian bells of the W function of
the signal mode can be transformed, in principle, into four-
fold form as indicated in (9), and the initial interference
fringes of the cat will be dramatically changed during the
interaction as a result of the competition between the dif-
ferent components of ρ̂AI(0) and ρ̂SI(0). Moreover, during
evolution, the rate of movement of the centres of peaks of
the W function is rather different and this leads to irreg-
ularity in its behaviour. So that the evolution of the cat
states in the present interaction yields different types of
multicomponent cat states [37]. All these facts can be seen
in Figures 1a–1c, where we have displayed the W function
for the signal mode (excluding losses) for the given values
of the parameters. In these figures (and throughout this
paper) we have taken αj = |αj | exp(iψj), where ψj is the
phase of the initial amplitude of the jth mode and also
we have defined z in (24) as z = x+ iy where the quadra-
ture variances 〈(∆X̂(t))2〉 and 〈(∆Ŷ (t))2〉 of the signal
mode are associated with the real part x and imaginary
part y, respectively. It is worth mentioning that the W
function curves contain most of their information within
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Fig. 1. TheW function of the signal mode when the two modes
(signal and idler) are initially in ECS for t = 0.55, g = 1, ψ1 =
ψ2 = 0, γ = n̄ = 0 and φ = π/2 and for: (a) (|α1|, |α2|) = (2, 2);
(b) (|α1|, |α2|) = (3, 2); (c) (|α1|, |α2|) = (2, 3).

one plane, in particular, for constant values of y. For this
reason and for simplicity we have plotted a W function
in one plane considering y � −0.25, where the W func-
tion illustrates more pronounced nonclassical effects (e.g.,
by means of negative values) for the case |α1| > |α2| and
also it includes a representative information for the other
cases. Figure 1a shows that the initial nonclassical nega-
tive values of the W function have been smeared out and
the system collapses to four-component statistical mixture
state. Further, such behaviour reveals that decoherence
can be established via the entanglement between differ-
ent modes in the parametric processes. In these cases the
single-mode behaviour undergoes amplification resulting
from the spontaneous pump photon decay [38]. It should
be borne in mind that in the present case the system is
completely isolated and then such type of decoherence can
be called nondissipative decoherence [39]. On the other
hand, the nonclassical negative values can be recovered
by controlling the “distance” between the initial cat states
of the signal and idler modes. To be more specific, when
|α1| > |α2| these negative values can be realized, how-
ever, when |α2| > |α1| they will disappear as indicated
in Figures 1b and 1c, respectively. In Figure 1c a three-
peak structure is dominant. Comparison of Figures 1a, 1b
and 1c is instructive. So, excluding the influence of the
environment the system can decohere and recohere by ad-
justing the initial distance between the components of the
cat of the input modes. However, for the dissipative case
the decoherence process is related not only to the am-
plification of the pumping field but also to damping of
radiation caused by the flux of coherent energy from ra-
diation to the reservoirs and noise from reservoirs to the
radiation. Under these circumstances the decoherence can
be achieved in a time shorter than that for the undamped
case. We displayed theW function for the overdamped and
underdamped cases in Figures 2a and 2b, respectively, for
the same situation as in Figure 1b. These figures show
overall distortion due to the dissipative nature of dynam-
ics. It is clear that the origin of the main contribution is in
the diagonal elements of the density matrix and then the
negative values of the W function of the undamped case
(Fig. 1b) are washed out. From Figure 2a one can observe
that the W function exhibits the well-known shape for
the thermal light, i.e. the system exhibits Bose-Einstein
statistics (super-classical light). However, from Figure 2b
(underdamped case) we can observe that the two-peak
structure is dominant. This situation is similar to that of
the single harmonic oscillator interacting with the thermal
bath in which a double Gaussian structure with missing
oscillatory behaviour occurs [11,12,36]. The explanation
of the behaviour of W function in Figure 2 can be un-
derstood by analyzing the behaviour of the W function
for the single-mode general term (25). Let us restrict our-
selves to the overdamped case for which the values of the
parameters ᾱj(t) are exponentially decaying (this can be
easily checked) when the interaction is going on and ac-
cordingly the centres of the peaks move toward the origin
and eventually the peaks merge with each other. The op-
posite situation occurs for the underdamped case. It is
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Fig. 2. The W function of the signal mode for the same sit-
uation as in Figure 1b except n̄ = 1 and (a) overdamped case
γ = 2g + 3; (b) underdamped case γ = 2g − 1.

worth mentioning that in these cases (overdamped and
underdamped cases) the contribution of the off-diagonal
elements corresponding to ρ̂AI(0) is suppressed faster than
that of ρ̂SI(0). This point will be discussed in the sum
photon-number distribution in the following section.

In general, if the interaction between different compo-
nents in the system occurs (regardless whether the interac-
tion with environment is considered or not), the decoher-
ence gradually increases and thus the system evolves into
a mixture (Trρ̂2

1(t) < 1, ρ̂1(t) is the reduced density ma-
trix of the signal mode), i.e. there occurs a destruction of
the inherent nonclassical effects. The rate of destruction is
sensitive to the nature of both the reservoir and paramet-
ric processes. Furthermore, we should mention that the P
function possesses somewhat similar behaviour as the W
function in such a case, i.e. it can take on negative val-
ues in certain regions for certain values of the parameters
and therefore it cannot behave like a classical probability

distribution function. Such an effect is independent of the
type of cat states, which are initially used in the interac-
tion. Finally, we should stress that it is difficult to analyze
the behaviour of the off-diagonal elements to obtain con-
crete information, so we have basically concentrated on
the computer simulation.

3.2 Photon-number distribution

The concept of photon is an integral part of the modern
description of light and the discrete nature of light can be
demonstrated by a photon detector based on the photo-
electric effect.

On the other hand, one of most interesting nonclassi-
cal effects emerging from the superposition principle is the
oscillatory behaviour of the photon-number distribution.
In general, such behaviour is closely related to the be-
haviour of the W function, however, this is necessary but
not sufficient condition. For example, the photon-number
distributions of ECS, OCS and YSS are completely differ-
ent; whereas those of ECS and OCS exhibit pairwise os-
cillations in phase space (even number of photons can be
observed for ECS and odd numbers for OCS), the distribu-
tion of YSS is a Poissonian even though the behaviour of
the W function for these states is qualitatively similar. In
the interaction under discussion for undamped case the os-
cillatory behaviour in the photon-number distribution can
be established even if the initial cat states exhibit Poisso-
nian statistics. This is of course based on the values of the
interaction parameters. The origin of such behaviour is in
the interference in phase space where the photon-number
distribution of input coherent light is always displaying
a single-peak structure, which is broader than the corre-
sponding Poisson distribution with the same mean photon
number.

We start our discussion by investigating the behaviour
of the undamped case. We consider here the photon-
number distribution P (n1) of the signal mode when the
signal and idler modes are initially prepared in the YSS.
We have seen that this quantity can exhibit oscillatory
behaviour after switching on of the interaction by a suit-
able time provided that |α1| > |α2|, as indicated in Fig-
ure 3 for shown values of the parameters. In this figure
ψ = φ − ψ1 − ψ2, where ψj is the phase of the ini-
tial jth mode (signal or idler) and φ is the phase of the
pump as before. In this case ψ represents the phase mis-
match. Furthermore, one can see that when ψ changes
from π/2 to −π/2 the parity of oscillations changes (com-
pare dashed and solid curves). The reason for taking
ψ = ±π/2 can be found in [27]. The origin of the oscilla-
tory behaviour in the photon-number distribution P (n1)
here is the competition between the contributions of ρ̂M(0)
and of ρ̂SI(0), as we will see in the sum photon-number
distribution. Further, it is worth mentioning that the be-
haviour of P (n1) in Figure 3 is similar to that of initially
cat state of a mode coupled to a phase-sensitive reser-
voir [12], (also [34] p. 114), however, the source of the os-
cillations in [12] is the phase information included in the
reservoir, which can be transferred to the field. In Figure 4
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Fig. 3. Single-mode photon-number distribution of the signal
mode when the signal and idler modes are prepared initially in
YSS; the values of the parameters are the same as in Figure 1b
and ψ = π/2 (solid curve), −π/2 (dashed curve).

Fig. 4. Single-mode photon-number distribution of the signal
mode when the signal and idler modes are prepared initially in
YSS, the values of the parameters are the same as in Figure 1c
with ψ = π/2 for γ = n̄ = 0 (undamped case-solid curve);
n̄ = 1, γ = 2g − 1 (underdamped case-short-dashed curve);
n̄ = 1, γ = 2g + 1 (overdamped case-long-dashed curve).

we have displayed P (n1) for the same situation as given
by the solid curve in Figure 3, but for |α1| < |α2| (solid
curve); further the damped cases are considered: under-
damped case (short-dashed curve) and overdamped case
(long-dashed curve). Comparing the solid curves in Fig-
ures 3 and 4, we see from Figure 4 that the oscillations in
P (n1) are smoothed out. Further, the comparison of vari-
ous curves in Figure 4 shows that the behaviour of P (n1)
for underdamped and undamped cases is similar in the
sense that they include smooth oscillations. These smooth
oscillations are completely washed out for the overdamped
case, as is expected. Actually, for |α2| > |α1| coherence is

lost and the main contribution is related to the energy of
the field mode (diagonal terms). As we can see the be-
haviour of the photon-number distribution is in a good
agreement with that of W function. Finally, it has been
verified that the behaviour of P (n1) for the damped case
when |α1| > |α2| and |α1| < |α2| is quite similar. This is
connected with the fact that the oscillatory behaviour in
the photon-number distribution is highly sensitive to the
dissipation dynamics.

3.3 Single-mode squeezing and reduced factorial
moments

Squeezing is one of the most important phenomena in
quantum optics because of its applications in various ar-
eas, e.g. in optics communication, quantum information
theory, etc. [40]. Squeezed light can be measured by a
homodyne detection in which the signal is superimposed
on a strong coherent beam of the local oscillator. Fur-
thermore, quite recently it has been shown experimentally
that there is an evidence of squeezed light in the biological
systems [41]. So an analysis of squeezing phenomenon in
quantum optical systems is an important topic.

We start our investigation by determining the be-
haviour of the single-mode squeezing. Generally, in the
system under consideration the output mode loses its ini-
tial squeezing feature during the interaction [16] as a result
of an amplification process and the interaction with the
environment, which accelerates the loss in quantum fluc-
tuations. Here we analyze the influence of different types
of cat states on the behaviour of quadrature squeezing. To
do so, considering αj to be real, we write down the quadra-
ture variance of the Y -component (which is expected to
yield squeezing) for the signal mode and various initial
input cat states as follows:

Qee(t) =
1
2

{
B1N (t)

+ α2
1f

2
1 (t)(tanhα2

1 − 1)

+ α2
2|f2(t)|2[tanhα2

2 + cos(2φ)]
}
, (27)

Qoe(t) =
1
2

{
B1N (t)

+ α2
1f

2
1 (t)(cothα2

1 − 1)

+ α2
2|f2(t)|2[tanhα2

2 + cos(2φ)]
}
, (28)

Qey(t) =
1
2

{
B1N (t) + α2

1f
2
1 (t)(tanhα2

1 − 1)

+ α2
2|f2(t)|2[1 + cos(2φ) − 2 exp(−4α2

2) sin2 φ]
}
·

(29)

In these expressions the subscripts ee, oe and ey stand for
the initial (signal, idler) modes which are in (ECS, ECS),
(OCS, ECS) and (ECS, YSS), respectively. Furthermore,
one can note that the significant value of squeezing can
be obtained when the pump phase is φ = ±π/2. Also it
can be mentioned that the correlation between signal and
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idler modes does not occur since cross terms such as α1α2

are absent. Actually, this is connected with the two-photon
nature of ECS and OCS where 〈âm

j (0)〉 = 0, j = 1, 2, when
m is an odd integer. It is worth mentioning that the ori-
gin of losses caused by reservoirs in expressions (27–29) is
the mean photon number. Further, it should be reminded
that ECS and YCS can exhibit normal squeezing, which is
more pronounced for ECS, however, OCS are unsqueezed
states [5].

Further, for the undamped case with φ = π/2, expres-
sion (28) can be rewritten as

Qoe(t) =
1
2

{
sinh2(gt)[1 + α2

2(tanhα2
2 − 1)]

+ α2
1 cosh2(gt)(cothα2

1 − 1)
}
· (30)

The last term in this expression is non-negative and can
become zero by appropriately choosing the value of α2

1.
In order to get squeezing in the signal mode, expres-
sion (30) must be negative and this depends on the be-
haviour of the function f(x) = x(tanh x − 1). In other
words, squeezing can be established if 1 + f(x) < 0, how-
ever, −0.3 � f(x) < 0, and consequently squeezing can-
not be obtained. More specifically, to obtain single-mode
squeezing from this device, the mode under consideration
should be prepared initially in a squeezed-cat state re-
gardless of the type of the cat state in the free port (if it
is squeezed or not). Furthermore, one can easily estimate
how long the single-mode squeezing of the initial light can
survive if this light is imposed at the input of the paramet-
ric amplifier. Restricting ourselves to the input ECS and
using the fact that squeezing is surviving if Qee(t) < 0,
the time range over which such a situation occurs is

t <
1
g

sinh−1

√
−f(α2

1)
1 + f(α2

1) + f(α2
2)
, (31)

where f(x) has the same expression as before. For Qoe(t)
(i.e. Eq. (28)) the procedure shows that the required time
is a complex number and this agrees with the previous
remark.

From (27) and (29) one can easily verify that the
amount of squeezing available in Qee(t) is much larger
than that in Qey(t) provided that α2 is finite; neverthe-
less, when the value of α2 is zero or large enough, both
quantities are typical. This implies that the larger the de-
gree of squeezing in the free port is, the more squeezing
will be available in the mode under consideration.

Figure 5 has been displayed to illustrate the behaviour
of the Q-squeezing factor for the undamped case when the
signal mode is prepared initially in ECS and the idler
mode in ECS (solid curve), YSS (short-dashed curve)
and OCS (long-dashed curve) in dependence on α2

2 for
the given values of the parameters. Furthermore, the
triangle- and star-centred curves represent the under-
damped case with a zero-temperature (n̄ = 0) and a
nonzero-temperature heat baths (n̄ �= 0), respectively,
when the two modes are in ECS. The choice of α2

1 = 0.7
is related to the fact that the initial ECS gives maximum

Fig. 5. The single-mode squeezing factor Q(t) for the sig-
nal mode being initially in ECS and the idler mode being
in ECS (solid curve), YSS (short-dashed curve) and in OCS
(long-dashed curve) for t = 0.2, g = 1, α2

1 = 0.7, ψ1 = ψ2 =
0, γ = n̄ = 0 and φ = π/2. Triangle- and star-centred curves
are given for the squeezing factors of a zero-temperature heat
bath (n̄ = 0) and a nonzero-temperature heat bath (n̄ = 0.1),
respectively, for the underdamped case with γ = 2g − 1.6 and
for the same situation as represented by the solid curve.

squeezing at this value. Now the analytical facts discussed
above are remarkable in Figure 5. Further, from this fig-
ure we can also see that for the OCS-idler-mode squeezing
is minimum when α2

2 is close to zero (indeed there is a
singularity at α2 = 0 related to the nature of the OCS),
increasing monotonically as α2 increases, then it stagnates
at large values of α2 yielding its maximum value. Actually,
the behaviour of this case is quite different from the be-
haviour of the ECS-idler- and YSS-idler-mode cases (com-
pare long-dashed curve with solid and short-dashed curves
in Fig. 5), where the maximum value of the former is the
minimum value for the latter. This means that for large
values of α2

2 the signal mode can produce the same value
of squeezing regardless of the type of the input cat states
in the free port. Also this figure shows how one can control
the single-mode squeezing relying on the type of initial cat
states in the free port.

We now turn our attention to the damped case. As
we mentioned earlier B1N (t) in expressions (27–29) is
always positive and therefore the coupling of the sys-
tem with the environment degrades the amount of the
single-mode squeezing. We have given two examples in
Figure 5 for the underdamped case (triangle- and star-
centred curves). Comparing these curves with the solid
one in the same figure, the conclusion becomes clear.
Moreover, from the comparison between triangle-centred
curve and star-centred curve we can conclude that in
nonzero-temperature heat bath case the quantum coher-
ence (i.e. nonclassical effects) is lost much faster than in
zero-temperature heat bath case [11]. On the other hand,
the occurrence of squeezing in the damped case has been
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verified also in the behaviour of the W function where
for the same values of the parameters we obtained that it
always exhibits noise-ellipse forms of cuts together with
single-peak or two-peak structure according to α2 is small
or large, respectively. It is worth mentioning that for the
cat states interacting with heat bath the authors of [5]
claimed that squeezing is much more robust with respect
to damping than the oscillations in the photon-number
distribution or the interference in phase space described
by W function. They obtained this conclusion by ana-
lyzing these quantities graphically. Nevertheless, in their
analysis, squeezing has been obtained for a specific region
of α (in particular when α is small) whereas the behaviour
of the photon-number distribution and theW function has
been analyzed in a different region (when α = 2, where
squeezing does not occur, see Fig. 8a in [5]). This leads
to the incorrect conclusion. We have examined the be-
haviour of both the photon-number distribution and the
W function for these cases using the same values of the
parameters as in [5], however, we have taken α = 1 (where
squeezing is noticeable) and found that the behaviour of
these quantities reflects equally the properties of squeezed
light. For more details reader can consult [42].

Finally, for the single-mode reduced factorial moments,
which can be measured by a set of photodetectors, we
have found that the behaviour of these quantities is in
a good agreement with the behaviour of the single-mode
squeezing.

4 Results for the compound-mode case

In this section we demonstrate the two-mode properties
for the system under discussion by determining the sum
photon-number distribution, two-mode squeezing and re-
duced factorial moments.

4.1 Sum photon-number distribution

The oscillations in the joint photon-number distribution
might be observed in experiments that generate two-mode
squeezed light in which the two modes may be distin-
guished by frequency or by propagation direction. Having
separated the two modes, as was done by using a polariz-
ing beamsplitter [43], one can send them directly onto sep-
arate photocounters and then build up the joint photon-
number distribution from the photocount statistics of a
sequence of pulses [44].

It has been shown [27] that the sum photon-number
distribution P (n) of the nondegenerate parametric am-
plifier, when the modes are initially prepared in coherent
state and under certain conditions, displays two regimes,
which exhibit either single-peak structure or oscillatory
behaviour. The single-peak structure can be narrower (or
broader) than that of the corresponding Poissonian dis-
tribution showing nonclassical (or classical) effects. The
striking feature is that the P (n) can exhibit, for cer-
tain choice of the interaction parameters, collapses and

Fig. 6. Sum photon-number distribution when the signal and
idler modes are prepared initially in ECS with |α1| = 3, |α2| =
2, g = 104, t = 3 × 10−4, ψ = π/2. On the right corner of the
figure the scheme shows the parity of the photon-number sum.

revivals in the photon-number domain somewhat simi-
lar to those known in the JCM. For the present system
the situation is rather complicated regarding to the evo-
lution of the density matrix (8) where the interference
in phase space is established. Excluding dissipation and
using ψ = ±π/2 as in [27], we have seen generally that
P (n) exhibits always oscillatory behaviour irrespective of
which type of cat states has been considered initially.
Moreover, P (n) can yield pairwise oscillations identifying
that even or odd photons are being observed. Figures 6
and 7 have been plotted to show such a phenomenon for
given values of the parameters. From Figure 6 we observe
that the long scale oscillations in the behaviour of P (n)
with P (2n + 1) = 0 are somewhat similar to those of
squeezed states [45]. Actually for squeezed states the pair-
wise oscillations are explained as a direct consequence of
the quadratic, or two-photon nature of the squeeze oper-
ator Ŝ(r), i.e. Ŝ(r) = exp[r(â2 − â†2)/2] [45]. However,
here the origin of the pairwise oscillations in P (n) is in
the competition between the processes described by three
parts of the density matrix of the field. Figures 7a–7c
give insight into this point, i.e. they show the manner
in which the photon-number distributions of the three
parts of the density matrix (8) compete. More precisely,
Figures 7a, 7b and 7c represent the sum photon-number
distributions PM(n), PSI(n) and PAI(n) associated with
ρ̂M(0), ρ̂SI(0) and ρ̂AI(0), correspondingly. Figure 7a shows
revival-collapse pattern, which is resulting from the sta-
tistical mixture part (9). Furthermore, from this figure
one can observe that when the number of photons in-
creases, the amplitude of the revivals diminishes, but the
revival periods extend. It is worth mentioning that such
a quantum collapse-revival phenomenon has been seen
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Fig. 7. Sum photon-number distributions corresponding to
the three parts of the density matrix for the same values of
the parameters as in Figure 6 and for: (a) P (n) resulting from
ρ̂M(0); (b) P (n) resulting from ρ̂SI(0); and (c) P (n) resulting
from ρ̂AI(0).

for the photon-number distribution of single-mode [46]
and two-mode [47] squeezed coherent states with com-
plex squeeze and displacement parameters. Associations
with the quantum phases of the modes may be consid-
ered [47,48], (also [34] p. 281). From Figure 7b it is clear
that PSI(n) oscillates between negative and positive val-
ues. Comparison of Figures 7a, 7b and 7c shows that the
values of PAI(n) are approximately negligible compared
with those of PM(n) and PSI(n). Now if we turn our at-
tention back to Figure 6 we can recognize that the com-
petition between PM(n) and PSI(n) leads to the destruc-
tion of collapse-revival phenomenon (which appeared in
Fig. 7a), however, the distribution “evolves” in an inter-
esting manner similarly as that for squeezed states. In
fact, the situation here is in contrast with that of the evo-
lution of cat states in the JCM where the interference
in phase space makes the revival-collapse phenomenon in
the atomic inversion more pronounced when the revival
time equals the half of that for the standard JCM with
initial coherent light [17]. The reason is that for the lat-
ter case the distribution of the spectral components of
the atomic inversion is one-dimensional distribution since
only one mode is involved, whereas here we have two-
dimensional superimposed distributions. Further, we have
obtained that the oscillations in P (n) increase if either g
or t or both are increased. This fact is clear if we look
at the problem as evolution of cat states under the ac-
tion of two-mode squeeze operator, where the squeezing
parameter in this case is r = gt and the oscillations be-
come more pronounced for the large values of r [44,49]. In
conclusion, for the system under consideration the origin
of the oscillations in the sum photon-number distribution
is two-fold:

(i) the interference in phase space;
(ii) the strong coupling between the signal and idler

modes of the system in the course of the interaction
time.

On the other hand, we have found by an explicit al-
gebraic calculation for all quantities studied in this pa-
per excepting quadrature squeezing that the contribu-
tions associated with elements of ρ̂SI(0) and ρ̂AI(0) involve
cos(φ1 ± φ2) and cosφ1,2, respectively. This fact together
with the information included in Figures 7 show that P (n)
can collapse and yield decoherence in relation to distribu-
tion for statistical mixture part using specific types of cat
states initially. More illustratively, preparing one of the
modes initially in ECS (or OCS) and the other in YSS
or vice versa, the P (n) evolves as described by Figure 7a
(for the same values of the parameters). This shows how
one can decohere the system apart from the amplification
nature of the system and without coupling it to the en-
vironment. We call such a type of decoherence a phase
decoherence. Actually, for some quantities the contribu-
tion of off-diagonal elements of the density matrix is re-
sponsible for the nonclassical effects, e.g. as we will see
below in the compound-mode reduced factorial moments.
Then we can make a good estimation of these phenom-
ena using such a property. The final remark is that the
nonclassical effects for the compound-mode case are much
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Fig. 8. Sum photon-number distribution for (a) un-
damped case with the values of the parameters as those
of the solid curve in Figure 3; (b) damped case with
(g, n̄, γ) = (0.5, 0.5, 2g − 0.9) (underdamped case-solid curve)
and (0.5, 0.5, 2g + 0.1) (overdamped case-dashed curve).

richer than those for the single-mode case. This results
from the strong quantum correlation between the signal
and idler modes, which manifests itself as the summation
in expressions (19) and (20). To make this point clear,
we give Figure 8a for the P (n) and for the same situa-
tion as that of the solid curve in Figure 3. The compari-
son between these two figures is instructive. Further, Fig-
ure 8b includes information on the damped case where one
can observe smooth oscillations for the underdamped case
(solid curve) and two-peak structure for the overdamped
case (dashed curve). Specifically, for the overdamped case
the off-diagonal elements are completely suppressed.

4.2 Two-mode squeezing and reduced factorial
moments

Firstly, we will discuss two-mode squeezing, which can
be measured by heterodyne detection where squeezing
is carried jointly by two modes of different frequencies
and the local oscillator has a frequency midway in be-
tween [50]. We proceed taking into account that the non-
degenerate parametric amplifier is well described by the
two-mode squeeze operator. Actually, two-mode squeez-
ing phenomenon is essentially connected with the states
upon which such operator acts. In other words, squeezing
may not exist for some specific states even if they include
two-mode squeeze operator in their structures. To show
this we give the form of the two-mode squeezing factor Q
when the signal and idler modes are initially prepared in
cat states, excluding losses, considering αj , j = 1, 2, are
real and φ = 0. In this case the squeezing factor Q takes
the form

Q(t) =
1
2
[Q1(t) +Q2(t)], (32)

where Qj(t), j = 1, 2, represent the corresponding single-
mode squeezing factors of the signal and idler modes, re-
spectively. From expression (32) it is clear that the corre-
lation between the signal and idler modes does not exist
since 〈Ŷ1Ŷ2〉 = 〈Ŷ1〉〈Ŷ2〉, where 〈Ŷj〉, j = 1, 2, are the ex-
pectation values of the Y -quadrature of the signal and
idler modes. The existence of correlation between these
two modes is important to obtain squeezing in the com-
pound modes even if the individual modes are not them-
selves squeezed [49]. Expression (32) shows that interfer-
ence in phase space can destroy squeezing and also that
the rates of degradation of the two-mode and single-mode
squeezing are on the same level for symmetrical losses.
Also it is obvious that the two-mode squeezing can be re-
alized if at least one of the two modes (signal or idler) can
exhibit single-mode squeezing. This is necessary but not
sufficient condition. Further, the maximum squeezing may
be produced when both the signal and idler modes exhibit
maximum single-mode squeezing. This reflects the impor-
tance of the choice of the type of the initial cat states.
From the discussion in Section 3 it is obvious that when
the two modes are initially in OCS, the interaction cannot
generate two-mode squeezing.

We now discuss the case that one of the modes is ini-
tially squeezed (ECS) and the other is unsqueezed (OCS)
for the same situation as that in (32). The required time to
obtain squeezing in the compound-mode case (Q(t) < 0) is

sinh(gt) <√
−|α1|2(tanh |α1|2 − 1) − |α2|2(coth |α2|2 − 1)

2(1 + |α1|2 tanh |α1|2 + |α2|2 coth |α2|2) · (33)

This inequality gives relation between the squeeze time
and the “distances” between the states, which are forming
the cats. So that the length of the device can be adjusted
to obtain squeezed light. An analysis to the right-hand
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Fig. 9. The compound two-mode squeezing against ψj , j =
1, 2, for undamped case when the signal and idler modes are
initially prepared in ECS for t = 0.2, |αj | = 0.7, g = 1, φ = π/2:
(a) squeezing factor S; (b) squeezing factor Q.

side of (33) gives that the maximum scaled time (effective
time) for squeezing is τ = gt � 0.1769 at (|α1|, |α2|) =
(0.6, 2.4). It is worth mentioning at this point that the
Y -component quadrature squeezing of ECS takes on its
maximum, whereas that of OCS vanishes.

On the other hand, when the phase information is in-
cluded (i.e. ψj �= 0, φ �= 0) the situation is improved in
such a way that squeezing can be detected in both quadra-
tures provided that one of the modes is initially prepared
in a squeezed-cat state, i.e. in ECS or YSS. The role of the
phase is analyzed in Figures 9a and 9b where we have plot-
ted the squeezing factors corresponding to X-component

and Y -component, respectively, when the signal and idler
modes are initially prepared in ECS. From these figures we
can see that maximum squeezing occurs in X-component
and locates at (ψ1, ψ2) = (m1π,m2π),mj = 1/2, 3/2. The
opposite situation can be observed for the Y -component
where squeezing also exists but it is less pronounced and
locates at (ψ1, ψ2) = (m1π,m2π),mj = 0, 1, 2, i.e. the ex-
treme values are exchanged. Such a behaviour in the two
quadratures indicates that the uncertainty relation holds.
Further, for φ = −π/2 we obtained similar behaviour,
however, the maximum squeezing values would be avail-
able in the Y -component. Further similar behaviour can
be seen if the other types of cat states are used. It is re-
markable that the behaviour of squeezing in the present
interaction is quite different from that for both ECS [3]
and two-mode squeezed coherent states [49] where for both
squeezing exists only in one of the two quadrature compo-
nents; perfect squeezing (i.e. 100% squeezing) occurs only
for the two-mode squeezed coherent states. In conclusion
the squeezing phenomenon discussed here is a manifesta-
tion of co-operative effects among the phases of the differ-
ent components of the system. Furthermore, by controlling
the phases in this device, squeezing can be amplified and
switched between the two quadratures.

We would like to conclude this subsection by shedding
the light on the behaviour of the reduced factorial mo-
ments for the compound-mode case. In this case the anti-
bunched light can be measured if both the signal and idler
modes are simultaneously detected by means of two pho-
todetectors and then their outputs are correlated. Gen-
erally, reduced factorial moments can evolve to produce
nonclassical negative values based on the types of initial
cat states. Further, we have checked that the contribution
of ρ̂M(0) cannot produce antibunched light independently.
These two facts reflect the role of the phase decoherence
property discussed above. On the other hand, similar ar-
gument as that for the single-mode case can be given here
except the case when the two modes are in YSS where a
slight antibunching can be observed, but only for certain
values of the interaction parameters. Figure 10 shows the
reduced factorial moments of the compound-mode case for
the given values of the parameters. In this figure we have
used the normalized factor Kc (= 〈W k〉/〈W 〉k − 1), where
the nonclassical effect occurs when Kc < 0. From this fig-
ure, it is interesting to observe that the behaviour of the
reduced factorial moments when the (signal, idler) modes
are in (OCS, OCS) is very close to the behaviour of the
second-order correlation function of OCS [5] provided that
|αj |, j = 1, 2, are finite.

5 Conclusions

In this paper we have analyzed the properties of the dis-
sipative parametric amplifier when the signal and idler
modes are initially prepared in Schrödinger-cat states.
Needless to say the present interaction as described by
the Hamiltonian (3) and the density matrix (8) is much
more complicated than that in the simple case of a har-
monic oscillator coupled with the heat bath [11–18]. After
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Fig. 10. The compound-mode reduced factorial moments
(Kc = 〈W k〉/〈W 〉k − 1) against |α1| for k = 5, ψ = π/2, t =
0.2, |α2| = 0.25, g = 0.5, and for the undamped case when
the signal and idler modes are prepared initially in (OCS,
OCS) (solid curve) and (OCS, ECS) (long-dashed curve). The
damped case is considered for the same situation as the solid
curve, but for the underdamped case (short-dashed curve)
(γ, n̄) = (2g − 0.6, 0.5) for the overdamped case (star-centred
curve) (γ, n̄) = (2g + 0.1, 0.5). The straightline shows the an-
tibunching bound.

obtaining the solution of the Heisenberg–Langevin equa-
tions quantum statistics of interacting modes have been
investigated based on the normally ordered characteristic
functions. The system of damping oscillators has been as-
sumed to have a flat spectrum and a chaotic distribution.

In general, there are two operations controlling the be-
haviour of the interaction which are the interference in
phase space and the entanglement. Intuitively, the initial
macroscopic cat states cannot be preserved in the system.
Furthermore, for long-time interaction the initial nonclas-
sical effects of the cats are degraded by the amplifica-
tion dynamics inherent in the system and the cumula-
tive effects of dissipation. Excluding dissipation we have
shown that if the input to the device are squeezed (sub-
Poissonian) cat states, then the output may be squeezed
(antibunched) too provided that the interaction time and
gain are finite. Furthermore, the device could be used to
amplify squeezing in the compound-mode case. On the
contrary, the well-known role of the parametric amplifier
as a source of perfect squeezing in the compound-mode
case rather than in single-mode case fades out for input
cat states. The photon-number distribution can exhibit
oscillatory behaviour, which is more pronounced in the
compound-mode case than in the single-mode case, re-
gardless of the types of the initial cat states. Also we have
shown that the decoherence can arise in the system from
the decay of the pump and the phase control.

For dissipation case we have considered in detail only
two cases which are related to underdamped and over-
damped regimes. In these cases the interaction tends to
eliminate the off-diagonal elements of the density matrix
and to affect the diagonal elements. It has been found that
the dynamical subsystems (signal or idler modes) collapse
to the statistical mixture state or thermal state accord-
ing to whether the underdamped regime or overdamping
regime is considered. Further, we have also shown that
the single-mode squeezing at nonzero temperature of the
environment decreases much faster than that at zero tem-
perature, however, this situation is generally valid for all
quantities studied in this paper. In conclusion, the losses
uniformly distributed over the device deteriorate its op-
erational characteristics. Of course, such deterioration is
more pronounced for the overdamped case. Finally, the
inclusion of lossy mechanics in the system is of a great
interest for accurate measurements.
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Appendix A

In this appendix we give the explicit forms for the time-
dependent coefficients (fj(t), Γjl(t), Γ ′

jl(t)) of the solution
of the Heisenberg–Langevin equations of the Hamilto-
nian (3) (for details see [30,31]):

f1(t) =
1√
ε

exp
[
− (γ1 + γ2)t

4

] [√
ε cosh

(√
ε

4
t

)

+ (γ2 − γ1) sinh
(√

ε

4
t

)]
, (A.1)

f2(t) =
4ig exp (iφ)√

ε
exp

[
− (γ1 + γ2)t

4

]
sinh

(√
ε

4
t

)
,

(A.2)

f3(t) =
1√
ε

exp
[
− (γ1 + γ2)t

4

] [√
ε cosh

(√
ε

4
t

)

+ (γ1 − γ2) sinh
(√

ε

4
t

)]
, (A.3)

Γjl(t) =
−ikjl

ε
′2
jl − ε

16

exp
[
− (γ1 + γ2)t

4

]

×
{√

ε

[
ε′jl + (−1)j+1 (γ2 − γ1)

4

]

×
[
exp(ε′jlt) − cosh

(√
ε

4
t

)]

−
[ ε
4

+ (−1)j+1(γ2 − γ1)ε′jl

]
sinh

(√
ε

4
t

)}
,

j = 1, 2, (A.4)
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Γ ′
jl(t) =

−2ig exp(iφ)kjl

ε′2jl − ε
16

exp
[
− (γ1 + γ2)t

4

]

×
{√

ε

2

[
exp(ε′jlt) − cosh

(√
ε

4
t

)]

− 2ε′jl sinh
(√

ε

4
t

)}
, j = 1, 2, (A.5)

where

ε = (γ1 − γ2)2 + 16g2, ε′jl =
1
4
(γ1 + γ2) + i(ωj − ϕjl).

(A.6)

Appendix B

In this appendix we write down the explicit forms for the
quantities (BjN (t), D(t)) in the expression (13) (for de-
tails see [30,31]):

B1N (t) = B1N (γ1, γ2, 〈n1d〉, 〈n2d〉, t) =
1
ε

{
8g2E1

+
γ1〈n1d〉

γ1γ2 − 4g2

[ (
γ2ε− 4g2(γ1 + γ2)

)
E

−√
ε
(
γ2(γ2 − γ1) + 4g2

)
F
]

+
4γ2g

2(1 + 〈n2d〉)
γ1γ2 − 4g2

[(γ1 + γ2)E −√
εF ]

− 16g2G[γ2(1 + 〈n2d〉) − γ1〈n1d〉]
}

(B.1)

B2N (t) = B1N (γ2, γ1, 〈n2d〉, 〈n1d〉, t), (B.2)

D(t) =
2g exp(−iφ)

ε

{
(γ2 − γ1)E1 −

√
εF

+
γ1〈n1d〉

γ1γ2 − 4g2
[(γ1γ2 − γ2

2 − 8g2)E + γ2

√
εF ]

+
γ2(1 + 〈n2d〉)
γ1γ2 − 4g2

[(γ1γ2 − γ2
1 − 8g2)E + γ1

√
εF ]

+ 2G[γ1〈n1d〉(γ2 − γ1) + γ2(1 + 〈n2d〉)(γ1 − γ2)]
}
,

(B.3)

ᾱ1(t) = α∗
1f1(t) + α′

2f
∗
2 (t),

ᾱ2(t) = α′
1f

∗
2 (t) + α∗

2f3(t),

ᾱ′
1(t) = α′

1f1(t) + α∗
2f2(t),

ᾱ′
2(t) = α∗

1f2(t) + α′
2f3(t), (B.4)

while

E = 1 − exp
[
− (γ1 + γ2)t

2

]
cosh

(√
ε

2
t

)
, (B.5a)

E1 = exp
[
− (γ1 + γ2)t

2

] [
cosh

(√
ε

2
t

)
− 1

]
, (B.5b)

F = exp
[
− (γ1 + γ2)t

2

]
sinh

(√
ε

2
t

)
, (B.5c)

G =
1

γ1 + γ2

{
1 − exp

[
− (γ1 + γ2)t

2

]}
· (B.5d)

A generalization to the case when the total density op-
erator is not factorized and the correlation between the
system and reservoirs is present, may be excluded [51].
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